El pensamiento creativo en estudiantes para profesores de ciencias: efectos del aprendizaje basado en problemas y en la historia de la ciencia

Creative Thinking in Prospective Science Teachers: Effects of Problem and History of Science Based Learning

Pensamento criativo em professores de ciência na formação inicial: efeitos da aprendizagem baseada em problemas e na história da ciência

Publicado
2020-07-01

El pensamiento creativo es una habilidad de los seres humanos que se puede desarrollar a través de la educación con material de aprendizaje y enseñanza apropiados. El pensamiento creativo es clave para adaptarse a unas condiciones de vida que cambian rápidamente y para producir soluciones creativas a todo tipo de los problemas de toda clase, y especialmente en el campo de la ciencia y la tecnología. El objetivo de este estudio es mejorar el pensamiento creativo de los estudiantes maestros turcos de ciencias en formación turcos para ser docentes de ciencias a través del aprendizaje basado en problemas (ABP) y el enfoque de la historia de la ciencia (HDC). El diseño cuasi-experimental tiene dos grupos experimentales, uno en la condición de aprendizaje abp y el otro grupo en el aprendizaje hdc, ambos de manera explícita y reflexiva con intervenciones que duraron dos semestres con un total de 72 maestros en formación estudiantes de tercer año  para ser maestros (8 hombres y 64 mujeres), que completaron el cuestionario de pensamiento creativo de Torrance como instrumento de recolección de datos y después se evaluaron las actuaciones de los dos grupos. Los resultados indican que el enfoque ABP fue más efectivo que el enfoque HDC para aumentar el pensamiento creativo y el interés de los estudiantes para maestros en la creatividad. Finalmente, se discuten las implicaciones de estos resultados para mejorar la creatividad de los maestros en formación inicial.

Palabras clave: creativity, Torrance Test TTCT, science teachers in initial training, problem-based learnign, history of science (en)
Palabras clave: creatividad, torrance test TTCT, profesores de ciencias en formación, aprendizaje basado en problemas, historia de la ciencia (es)
Palabras clave: Criatividade;, Torrance Test TTCT, professores de ciências em treinamento inicial, aprendizagem baseada em problemas, história da ciência (pt)
Nihal Dogan, Bolu Abant Izzet Baysal University

Departamento de Matemáticas y Ciencias, Facultad de Educación, Universidad de Bolu Abant Izzet Baysal, Turquía

Maria Antonia Manassero Uib, Universidad de las Islas Baleares

Departmento de Psicología, Facultad de Psicología, Universidad de las Islas Baleares, España

Abd-El-Khalick, F., y Lederman, N. G. (2000). The Influence of history of science courses on students’ views of nature of science. Journal of Research in Science Teaching, 37(10), 1057-1095. https://doi.org/10.1002/1098-2736(200012)37:10<1057::AID-TEA3>3.0.CO;2-C

Alvesson, M., y Sandberg, J. (2011). Generating research questions through problematization. Academy of Management Review, 36(2), 247-271.

Ambrose, D. y Sternberg, R. J. (Eds.) (2016). Creative Intelligence in the 21st Century. Rotterdam: Sense Publishers.

Ananiadou, K. y Claro, M. (2009). 21st Century Skills and Competences for New Millennium Learners in OECD Countries. OECD Education Working Papers, 41. https://doi.org/10.1787/19939019

Aslan, A.E. (2001). Versión turca del test de creatividad de Torrance. [Torrance yaratıcı düşünce testi’nin Türkçe versiyonu]. Marmara Üniversitesi Atatürk Eğitim Fakültesi Eğitim Bilimleri Dergisi, 14, 19-40.

Barak, M. (2006). Teaching methods for systematic inventive problem-solving: Evaluation of a course for teachers. Research in Science and Technological Education, 24(2), 237–254.

Bok, D. (2006). Our Underachieving Colleges: A candid look at how much students learn and why they should be learning more. Princeton: Princeton University Press.

Bragaw, D. H., y Hartoonian, H. M. (1988). Social studies: The study of people in society. Content of the curriculum: 1988 Yearbook of the association of supervision and curriculum development (ASCD). ASCD.

Burke, P. (1978). Popular culture in early modern Europe. New York University Press.

Driver, R., Asoko, H., Leach, J., Mortimer, E., y Scott, P. (1994). Constructing scientific knowledge in the classroom. Educational Researcher, 23, 5-12. https://doi.org/10.3102/0013189X023007005

Dogan, N., y Abd-El-Khalick, F. (2008). Turkish grade 10 students’ and science teachers’ conceptions of nature of science: A national study. Journal of Research in Science Teaching, 45, 1083–1112. https://doi.org/10.1002/tea.20243

Dogan, N, (2011). What went wrong? Literature students are more informed about the nature of science than science students. Education & Science, 36(159), 220-235.

Dogan, N. (2017) Blending problem-based learning and history of science approaches to enhance views about scientific inquiry: new wine in an old bottle. Journal of Education and Training Studies, 5, (10), 99-112.

Dunbar, K. N. y Klahr, D. (2012). Scientific thinking and reasoning. En K. J. Holyoak y R. G. Morrison (Eds.), The Oxford Handbook of Thinking and Reasoning (pp. 456-474). Oxford: Oxford University Press.

Dunlap, J. C. (2005). Changes in students' use of lifelong learning skills during a problem-based learning project. Performance Improvement Quarterly, 18(1), 5–33.

European Union (2014). Key Competence Development in School Education in Europe. KeyCoNet’s review of the literature: A summary. 2014. http://keyconet.eun.org

Fullan, M. y Scott, G. (2014). Education PLUS. Seattle, W.: Collaborative Impact SPC. Guilford, J. P. (1967). The nature of intelligence. Nueva York, McGraw-Hill.

Hattie, J. (2009). Visible learning: A synthesis of over 800 meta-analyses relating to achievement. Routledge.

Hattie, J. (2012). Visible learning for teachers: Maximizing impact on learning. Routledge.

Hodson, D., y Hodson, J. (1998). From constructivism to social constructivism: A Vygotskian perspective. School Science Review, 79, 33–46.

Kartal, E., Cobern, W.W., Dogan, N., Irez, S., Cakmakci, G. y Yalaki, Y. (2018). Improving science teachers’ nature of science views through an innovative continuing professional development program. The International Journal of STEM Education, 5 (30), 1-10. https://doi.org/10.1186/s40594-018-0125-4

Keller-Mathers, S. y Murdock, M. (2002). Teaching the content of creativity using the Torrance Incubation Model: Eyes wide open to the possibilities of learning. National Association of Gifted Children Celebrate Creativity Newsletter, 13 (2), 7-9.

Kind, P., y Kind, V. (2007). Creativity in science education: Perspectives and challenges for developing school science. Studies in Science Education, 43, 1-37.

Krathwohl, D. (2002). A Revision of Bloom’s Taxonomy. Theory into Practice, 41 (4), 212- 218.

Lee, H. J. y Cho, Y. S. (2007). Factors affecting problem finding depending on degree of structure of problem situation. Journal of Educational Research, 101(2), 113–124.

Lycke, K. H., Grøttum, P. y Strømsø, H. I. (2006). Student learning strategies, mental models and learning outcomes in problem-based and traditional curricula in medicine. Medical Teacher, 28(8), 717–722.

Manassero-Mas, M.A. y Vázquez-Alonso, A. (2019a). Conceptualización y taxonomía para estructurar los conocimientos acerca de la ciencia. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 16(3), 3104.

Manassero-Mas, M. A. y Vázquez-Alonso, A. (2019b). Taxonomía de las destrezas de pensamiento: una herramienta clave para la alfabetización científica. En M. D. Maciel y E. Albrecht (org.), Ciência, Tecnologia y Sociedade: Ensino, Pesquisa e Formação (pp. 17-38). UNICSUL.

Ministry of National Education, MONE (2018). Science course curriculum (Primary and secondary school 3, 4, 5, 6, 7, and 8th grades. Ministry of National Education Press.

National Research Council (2012). Education for Life and Work: Developing Transferable Knowledge and Skills in the 21st Century. The National Academies Press.

Ozer, F., Doğan, N., Yalaki, Y., İrez, S., y Çakmakçı, G. (2020). The ultimate beneficiaries of continuing professional development programs: The middle school students’ nature of science views. Research in Science Education, https://doi.org/10.1007/s11165-019-9824-1.

Penaloza, A. A., y Calvillo, D. P. (2012). Incubation provides relief from artificial fixation in problem solving. Creativity Research Journal, 24(4), 338-344.

Piaget, J. y Inhelder, B. (1997). Psicología del niño. Morata.

Plsek, P. (1997). Creativity, Innovation, and Quality. ASQ Quality Press.

Runco, M. A. (2014). Creativity: Theories and themes: Research, development, and practice. Elsevier.

Shayer, M. y Adey, P.S. (eds.) (2002). Learning Intelligence: Cognitive Acceleration across the curriculum from 5 to 15 years. Milton Keynes: Open University Press.

Smith, S. M. y Ward, T. B. (2012). Cognition and the Creation of Ideas. En K. J. Holyoak y R. G. Morrison (Eds.), The Oxford Handbook of Thinking and Reasoning (pp. 456-474). Oxford University Press.

Solomon, J., Scott, L., y Duveen, J. (1996). Large-scale exploration of pupils’ understanding of the nature of science. Science Education, 80, 493–508. https://doi.org/10.1002/(SICI)1098-237X(199609)80:5<493::AID-SCE1>3.0.CO;2-6

Sternberg, R. J., Lubart, T. I., Kaufman, J. C., y Pretz, J. E. (2005). Creativity. En K. J. Holyoak y R. G. Morrison (Eds.), The Cambridge Handbook of Thinking and Reasoning (pp. 352-369). Cambridge University Press.

Sungur, S., y Tekkaya, C. (2006). Effects of problem-based learning and traditional instruction on self-regulated learning. Journal of Educational Research, 99(5), 307–317.

Tan, O. S. (2000). Thinking skills, creativity and problem-based learning. In O. S. Tan, P. Little, S. Y. Hee y J. Conway (Eds.), Problem-based learning: Educational innovation across disciplines. Singapore: Temasek Centre for Problem-based Learning.

Torrance, E. P. (1962). Guiding creative talent. Englewood Cliffs, NJ: Prentice Hall.

Torrance, E. P. (1966). The Torrance tests of creative thinking-Norms-Technical Manual Research Edition-Verbal Tests, Forms A and B-Figural Tests, Forms A and B. Personnel Press.

Torrance, E. P. (1974). The Torrance test of creative thinking: Norms-technical manual. Bensenvilles IL: Scholastic Testing Service.

Torrance, E. P. (1988). The nature of creativity as manifest in its testing. En R. J. Sternberg (Ed.), The nature of creativity (pp. 43–73). New York: Cambridge University Press.

Torrance, E.P. (1990). Torrance tests of creative thinking. Manual for Scoring and Interpreting Results. Verbal, Forms A and B. Bensenville: Scholastic Testing Service.

Torrance, E. P. (1998). The Torrance tests of creative thinking norms—technical manual figural (streamlined) forms A y B. Bensenville, IL: Scholastic Testing Service, Inc.

Vázquez, A., Acevedo, J.A., Manassero, M.A. y Acevedo, P. (2001). Cuatro paradigmas básicos sobre la naturaleza de la ciencia. Argumentos de Razón Técnica, 4, 135-176.

Vázquez-Alonso, Á., Manassero-Mas, M. A. (2014). Science teachers’ beliefs about nature of science and science technology-society ıssues. En R. Evans, J. Luft, C. Czerniak, C. Pea (eds), The role of science teachers’ beliefs in ınternational classrooms. Rotterdam: Sense Publishers.

Vygotsky, L. (1978). Interaction between. 1earning and development. From: Mind and. Society (pp. 79–91). Harvard University Press.

Wallas, G. (1926). The Art of Thought. Harcourt, Brace and Company.

Yeung, E., Au-Yeung, S., Chiu, T., Mok, N. y Lai, P. (2003). Problem design in problem-based learning: Evaluating students learning and self-directed learning practice. Innovations in Education and Teaching International, 40(3), 237–244.

Dogan, N., Maria Antonia Manassero , M. A. M., & Vázquez-Alonso, Ángel. (2020). El pensamiento creativo en estudiantes para profesores de ciencias: efectos del aprendizaje basado en problemas y en la historia de la ciencia . Tecné, Episteme Y Didaxis: TED, (48). https://doi.org/10.17227/ted.num48-10926

Visitas

36

Citaciones

Métricas PlumX

Descargas

La descarga de datos todavía no está disponible.